

Objectives

The VecShare framework aims to:

- Centralize web repositories of pre-trained embedding
- Enable programmatic sharing of embeddings
- Reduce time & computational costs of selecting relevant pre-trained embeddings

Visit us at: **www.vecshare.org**

Introduction

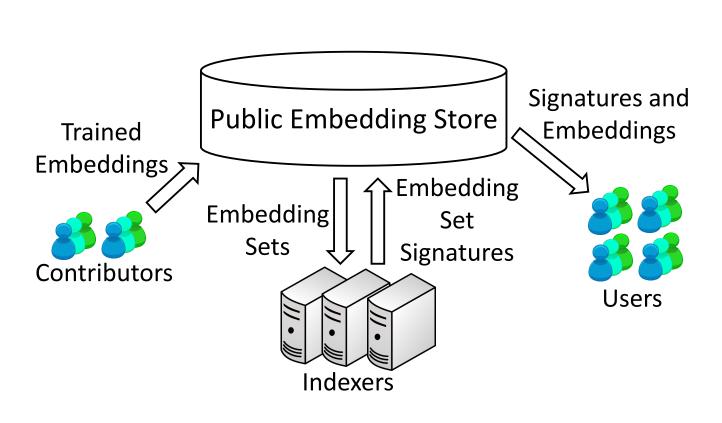


Figure 1: The VecShare Framework

Indexers poll the data share for shared embeddings uploaded by **contributors**. Indexers compute and store compact repre sentations, or **signatures**, of each uploaded embedding. Each **signature** has an associated **similarity measure** which esti mates the relevance of the signature's associated embedding to user's target corpus. Libraries integrated with the data share enable programatic access and selection of embeddings.

Signature & Similarity Measures

Signatures rapidly compare embeddings to a target corpora and estimate the relevance of the embedding to a user's task.

- AvgRank Signature: T_v most frequent words in the embedding corpus, excluding a set of stop words
- AvgRank Similarity Method: 1 Compute the negative average rank of signature words within the user's frequency-ordered vocabulary.
- 2 Most similar embedding is the one with lowest average rank.
- SimCorr Signature: Embeddings for T_E most frequent stopwords in the embedding's corpus.
- SimCorr Similarity Method:
- **1** Compute a set of embeddings from the target corpus
- **2** Compute all pairwise similarities between words in both target and embedding corpora
- 3 Most similar embedding is one with highest Pearson correlation between shared and corpus embedding pairwise similarities.

VecShare: A Framework for Sharing Word Representation Vectors

Jared Fernandez, Zhaocheng Yu, Doug Downey {jared.fern | zhaochengyu2017}@u.northwestern.edu, ddowney@eecs.northwestern.edu

Department of Electrical Engineering and Computer Science, Northwestern University

Experiments

Experiments were performed to determine the effectiveness of VecShare signatures and similarity measures in selecting accurate embeddings for NLP tasks. Selected embeddings were used as features in a convolutional neural net for text classification.

We evaluate the ability of the previously described signatures to select embeddings from:

- Large-corpus settings: Set of state-of-the-art embeddings trained on billions of tokens • Google News, Wikipedia-Gigaword, Twitter, Common Crawl embeddings
- Small-corpus settings: Specific, targeted embeddings trained on corpora of a single topic • word2vec embeddings on categorized subsets of the New York Times corpus.

Results

Two measures of the quality of a signature method are reported :

- ρ : The Pearson correlation between similarity scores assigned by a method and the set's accuracy on the classification task
- Acc: The accuracy of the selected embedding embedding.

Embedding selection was evaluated against: Random, and MaxTkn baselines. The ensemble method All combines the average ranks of the AvgRank, SimCorr, MaxTkn methods.

	Reuters		Su	Subjectivity			IMDB			20news			Average	
	ρ	Sel.	Acc.	ρ	Sel.	Acc.	ρ	Sel.	Acc.	ρ	Sel.	Acc.	ρ	Acc
Randon	n –	_	0.844	_	_	0.667	_	_	0.829	_	_	0.610	_	0.738
MaxTki	n 0.62	govt	0.856	-0.64	govt	0.568	-0.02	govt	0.763	0.82	govt	0.647	0.20	0.709
VocabR	k 0.74	econ	0.880	0.51	mov	0.686	0.89	mov	0.835	0.64	book	0.629	0.70	0.758
SimCor	r 0.51	econ	0.880	0.62	book	0.706	0.93	book	0.842	-0.25	agri	0.551	0.45	0.745
A	ll 0.82	econ	0.880	0.16	book	0.706	0.87	book	0.842	0.67	book	0.629	0.63	0.764
Oracle	e –	econ	0.880	_	book	0.706	_	book	0.842	_	govt	0.647	_	0.769

Table 1: Experimental results using small-corpus embeddings. The VocabRk and SimCorr methods outperform the baselines, and the All method performs best in terms of both correlation ρ and text classification accuracy.

	Reuters			Su	bjecti	vity	IMDB			20news			Average	
	ρ	Sel.	Acc.	ρ	Sel.	Acc.	ρ	Sel.	Acc.	ρ	Sel.	Acc.	ρ	Acc
Random	_	_	0.862	_	_	0.688	_	_	0.868	_	_	0.763	_	0.795
MaxTkn	0.63	web	0.888	0.19	web	0.728	0.38	web	0.881	0.97	web	0.863	0.54	0.840
VocabRk	0.46	gnws	0.882	0.02	gnws	0.759	0.40	gnws	0.886	0.20	gnws	0.719	0.27	0.812
SimCorr	-0.65	wik+	0.84	0.81	gnws	0.759	0.45	gnws	0.886	0.60	twtr	0.748	0.30	0.808
All	0.26	gnws	0.882	0.43	gnws	0.759	0.49	gnws	0.886	0.87	web	0.863	0.51	0.848
Oracle	_	web	0.888	_	gnws	0.759	_	gnws	0.886	_	web	0.863	_	0.85

Table 2: Experimental results using large-corpus embeddings. All of the signature methods outperform the random baseline, and the All method performs best in terms of both correlation ρ and text classification accuracy.

Efficiency Experiments

Average Time for Embedding Selection:

- Conventional Approach: 177 minutes
- VocabRk Signature: 38 seconds

The VecShare AvgRank signature method provided an average 280x speedup over current practice of manually training and evaluating each embedding. VecShare reduces memory overhead: the total size of signatures is 4-5 orders of magnitude smaller than full embedding sets.

- Word Vector Query and Extraction
- Embedding Upload and Download

>>>	<pre>from vecshare import</pre>	vecshare as v	S							
>>>	vs.check()									
	<pre>embedding_name</pre>	case_sensiti	ve dime	ension	emb_typ	vocab_size				
0	reutersr8	Fal	se	100	word2vec	7821				
1	reuters21578	Fal	se	100	word2vec	20203				
2	brown	Fal	se	100	word2vec	15062				
3	<pre>glove_gigaword100d</pre>	Fal	se	100	word2vec	399922				
4	oanc_written	Fal	se	100	word2vec	732127				
<pre>>>> vs.query(['The', 'farm'], 'agriculture_40')</pre>										
1	text d99 d	d98 d97	d96		d1	d0				
0	the -1.414755 0.4149	973 1.115698	0.03408		0.037287 -	1.004704				
1 :	farm 0.349535 -0.3792	208 -0.189476	2.776809		0.067443 -	1.391604				
[2	rows x 101 columns]									
>>>	<pre>vs.extract('agricult</pre>	ure_40', 'Test	_Input/reu	itersR8	_all')					
Embedding extraction begins.										
100% (23584 of 23584) ####################################										
Embedding successfully extracted.										

The library is extensible and allows for the addition of both new indexers and signatures at any time.

Research supported in part by NSF grant IIS-1351029 & the Allen Institute for Artificial Intelligence. Travel supported in part by Northwestern University EECS Department and Undergraduate Research Grant Program.

Library

The VecShare library for Python 2.7/3.5 is available by pip **install vecshare** on PyPi, with support for:

• Embedding Selection: AvgRank, MaxTkn, & WordSim

Figure 2: VecShare API Example

Acknowledgements