

Introduction

We seek to determine if it is possible to select a training set substantially more informative Model than a set randomly drawn sentences. By selectively training on high information sentences, *n*-gran language models can learn the language distribution faster and more accurately than models Rand trained on randomly sampled training sets. $Z_{0.5}$ Our approach preferentially samples high perplexity sentences, as determined by an easily $Z_{1.0}$ queryable *n*-gram language model. RNNLMs are then trained with corrective importance $Z_{2.0}$ weights to remove sampling bias. $Z_{4.0}$ Z^2 Methodology Z_{full} *n*-gra **1** Train an *n*-gram model on randomly sampled sentences from the corpus. Rand $Z_{0.5}$ • Determine *n*-gram perplexities for each of the remaining sequences $Z_{1.0}$ ³Sample training sequences using a distribution determined as a function of the calculated $Z_{2.0}$ n-gram perplexities $Z_{4.0}$ • Train on each sequence s with weight $w_s = \frac{1}{Pr_{keep}(s)}$ Z^2 Z_{Full} **Importance Sampling Distributions** *n*-gra Rand $Z_{0.5}$ We propose multiple sampling distributions for selecting training sequences according to

their *n*-gram perplexity.

• Z_{Full} Sampling:

 $Pr_{Z_{Full}}(s) \propto \left| lpha^{\underline{p} \underline{p}}
ight|$

• Z_{α} Sampling:

$$Pr_{Z_{lpha}}(s) \propto egin{cases} lpha rac{ppl(s)-\mu_{ppl}}{\sigma_{ppl}} \ 1, \end{cases}$$

• Z^2 Sampling:

$$Pr_{Z^2}(s) \propto egin{cases} lpha \left(rac{ppl(s) - \mu_{ppl}}{\sigma_{ppl}}
ight)^2 + 1, & ext{if } ppl(s) > \mu_{ppl} \ 1, & ext{else} \end{cases}$$

 μ_{ppl}, σ_{ppl} : Sentence ngram ppl mean and standard deviation

Sequences with perplexities in the 100th percentile were generally esoteric, and were assigned boosted selection probability.

Sampling Informative Training Data for RNN Language Models Jared Fernandez, Doug Downey jared.fern@u.northwestern.edu, ddowney@eecs.northwestern.edu Department of Electrical Engineering and Computer Science, Northwestern University

$$\left[rac{pl(s)-\mu_{ppl}}{\sigma_{ppl}}+1
ight]$$

+1, if $ppl(s) > \mu_{ppl}$ else

 $Z_{1.0}$ $Z_{2.0}$ $Z_{4.0}$ Z^2 Z_{Full} Mode *n*-gra Rand $Z_{0.5}$ $Z_{1.0}$ $Z_{4.0}$ $Z_{full} \ Z^2$

Results

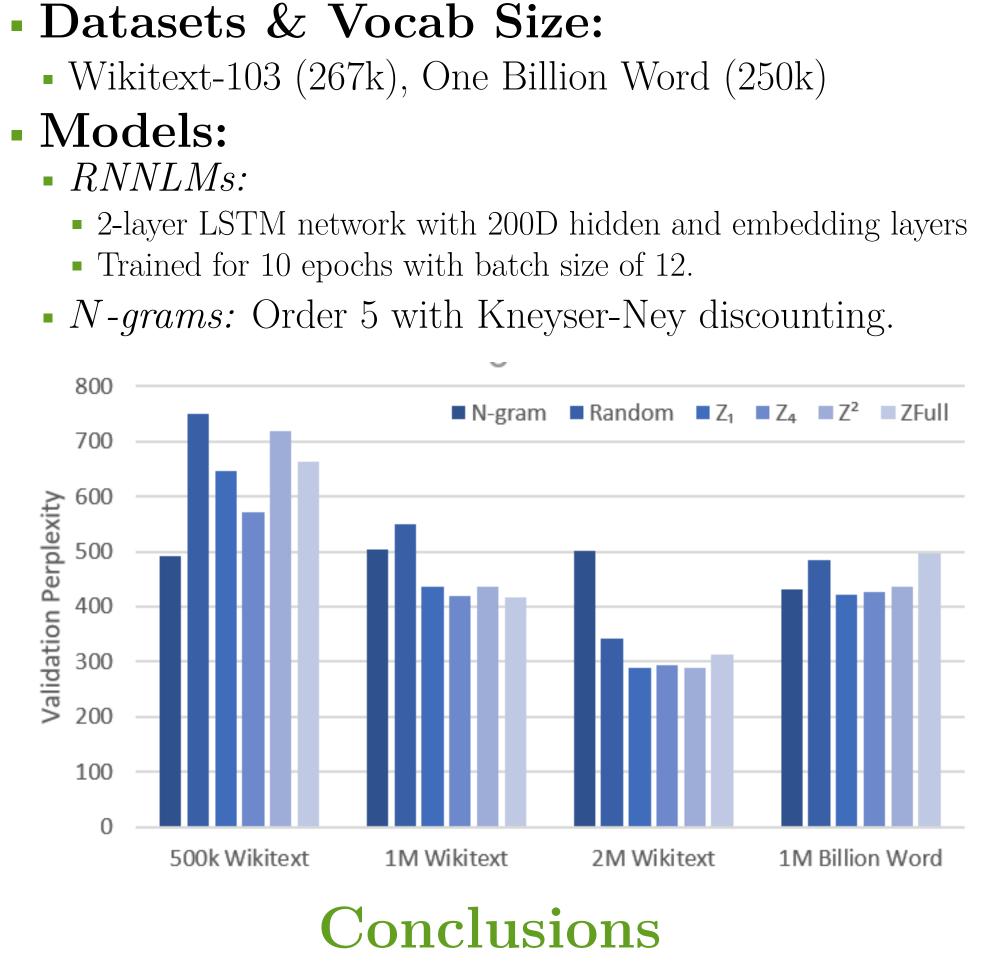
el	Tokens	μ_{ngram}	σ_{ngram}	RNN Ppl
LM	500k			492.3
lom	500k	449.0	346.4	749.1
	500k	497.1	398.8	643.9
	500k	544.1	440.1	645.2
	500k	615.7	481.3	593.2
	500k	729.0	523.6	571.4
	500k	576.5	499.7	720.0
	500k	627.1	451.9	663.7
LM	1M			502.7
lom	$1\mathrm{M}$	448.9	380.2	550.6
	1M	495.7	431.8	545.7
	$1\mathrm{M}$	540.4	475.4	435.4
	$1\mathrm{M}$	615.6	528.4	426.9
	$1\mathrm{M}$	732.9	584.4	420.1
	1M	571.5	535.7	435.7
	$1\mathrm{M}$	608.6	489.9	416.3
LM	2M			502.6
lom	2M	430.45	392.1	341.3
	2M	471.8	445.2	292.7
	2M	514.6	493.9	289.8
	2M	582.8	544.6	346.9
	2M	684.6	604.7	294.6
	2M	518.4	522.9	287.9
	2M	568.4	506.5	312.5
hlo 1	Pernley	tities for '	Willitert	models

Table 1: Perplexities for Wikitext models.

el	Tokens	μ_{ngram}	σ_{ngram}	RNN Ppl
m	1M			432.5
lom	1M	433.2	515.4	484.0
	1M	476.8	410.9	436.6
	1M	543.8	529.0	421.5
	1M	726.4	517.3	427.3
	1M	635.19	458.69	495.75
	1M	639.2	593.7	435.3

Table 2: Perplexities for Billion Word models.

Experimental Details



 Selecting training sequences with higher average *n*-gram perplexity reduces the perplexity of the resulting RNNLM • Low perplexity sequences should be selected with relatively high probability • Likely because low perplexity sequences contain subsequences shared with rare sequences

Future Work

• Alternative sampling distributions based on: • Sentence perplexity calculated by a pilot RNNLM • Sentence's unique n-gram content

• Sampling in a streaming setting and periodically updating the sampling distribution

Acknowledgements

Research supported in part by NSF grants IIS-1351029 & the Allen Institute for Artificial Intelligence. Support for travel provided in part by the ACL Student Travel Grant (NSF Grant IIS-1827830).